Agent Permission Protocol (APP)

Formal protocol whitepaper (proposal by Crittora)

Executive summary

Agentic Al systems now initiate actions, invoke tools, and execute workflows across
multiple services. This shift breaks the traditional security boundary built around
identity and long-lived credentials. The central risk is authority: what an agent is
allowed to do, for how long, on whose behalf, and under what constraints.

Without an explicit, execution-time authority layer, agentic Al systems remain
fundamentally unsafe regardless of model alignment, prompt constraints, or identity
controls.

The Agent Permission Protocol (APP) defines a cryptographically signed and encrypted
permission policy plus a deterministic verification and enforcement process that MUST
gate agent execution before any action occurs. APP makes authority explicit, time-
bound, and verifiable, enabling safe autonomy without relying on model compliance or
implicit trust.

Most agent frameworks today are insecure by construction. They grant authority
implicitly through tool availability, rely on model compliance for enforcement, and
provide no cryptographic proof of authorization. These systems cannot be made safe
through better prompts, monitoring, or alignment alone.

Any agent system that allows tools to be invoked without presenting a sealed
permission policy at execution time is operating with ambient authority and cannot
provide provable safety guarantees.

APP defines the authority layer for agentic systems. Just as TLS secures transport and
OAuth standardizes delegated identity, APP standardizes executable authority.
Without an explicit authority layer, autonomous agents cannot be made safe at scale.

This paper is a proposal from Crittora to formalize APP as a cross-platform protocol
standard. It defines the model, schema, verification order, and conformance
expectations required to make agent actions provable, bounded, and auditable.

Abstract

APP is a protocol for explicit, capability-based authority in agentic Al systems. It
separates intelligence from authority by requiring a signed and encrypted permission
policy before any action-capable execution. Permission policies enumerate allowed
capabilities, bind audience and intent, and expire by default. A deterministic validation



pipeline ensures fail-closed enforcement at runtime. This draft presents the protocol
model, core semantics, and a path toward standardization.

Authority is not just a security primitive. It is a measurable, auditable unit that enables
accountable automation and defensible economics. When authority is explicit, time-
bound, and verifiable, risk can be quantified, compliance can be proven, and
autonomous execution can be governed with precision.

Conformance language

The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL in this document are to be
interpreted as specified in RFC 2119.

Figures are illustrative and non-normative unless stated otherwise.

1. Introduction

1.1 The rise of agentic Al

Agentic systems now execute multi-step workflows and tool calls with minimal human
intervention. As autonomy increases, actions and side effects expand beyond what
traditional security models can govern.

1.2 Why authority replaces identity as the boundary

Identity can authenticate who is calling a system, but it cannot determine what an agent
is allowed to do in a specific context. Authority is the true boundary in agentic
execution.

APP defines the authority layer for agentic systems - a layer distinct from identity,
transport security, model context, and model reasoning.

This separation of intelligence and authority is enforced outside the model (see Figure

i Model / Intelligence

Prompt / context
(non-authoritative)

Expose allowed capabilities Execute |t
(tool allowlist) H

leny execution (fail closed)

Figure 2. Separation of intelligence and authority. The model may propose actions, but authority
is enforced outside the model by pre-execution verification and capability exposure.



1.3 Ambient authority and implicit permissions

Most agent runtimes mount tools by default. Once tools exist in the runtime, authority
is implicitly granted without explicit intent or time bounds. This creates ambient
permission surfaces that are difficult to audit or constrain.

1.4 A protocol-level solution

Prompt guardrails are advisory and rely on model compliance. APP proposes a
protocol boundary: no action occurs without a valid, explicit, verifiable, encrypted
permission policy. Any agent system that permits tool invocation or external action
without presenting and verifying a sealed permission policy at execution time is
operating with ambient authority and cannot provide provable safety, containment, or
audit guarantees.

1.5 Proposal scope and goals

APP focuses on explicit authority for agent actions. It does not govern model alignment,
tool correctness, or internal reasoning. It is designed to be platform-neutral and
enforceable by independent runtimes.

2. Problem statement: authority in agentic Al
2.1 Tool availability equals authority

Agents can invoke any mounted tool, even when that tool is unrelated to the current
request or intent.

2.2 Implicit trust assumptions

Agent frameworks frequently assume the model will follow instructions and avoid
sensitive actions. This is not a security guarantee.

2.3 Privilege creep

As systems evolve, tools accumulate while permissions rarely shrink. Agents inherit
increasingly broad authority over time.

2.4 Replay and context collapse

Prompts and instructions are often reusable and lack binding to time, actor, or intent.
This enables unintended reuse and replay.

2.5 Confused deputy in multi-actor systems

Agents act on behalf of multiple users or systems, yet authority is implicit. This leads to
confused deputy conditions and unintended delegation.



2.6 Why prompt guardrails are insufficient

Prompt constraints do not prevent tool access at the execution layer and provide no
cryptographic assurance or replay protection.

2.7 Capability-based security as the right model

Capability-based models treat authority as an explicit, unforgeable grant. They map
cleanly to agent actions and enforce least privilege by default.

3. Design principles

Explicit authority over implicit trust.
Authority is separate from intelligence.
Least privilege by construction.
Time-bounded authority by default.
Capability-based scope, not role-based access.
Deny-by-default execution.

Cryptographic verifiability.

Replay resistance and single-use authority.
. Deterministic, auditable enforcement.

10 Protocol-level, not platform-specific.

00NN

4. Protocol overview

APP defines a permission policy as the unit of authority. A policy binds intent, scope,
audience, and time bounds into a cryptographically verifiable artifact. Policies are
presented to an enforcement point that verifies the policy and exposes only the
capabilities allowed for the specified duration.

High-level flow:

1. Issue: an issuer constructs a permission policy for a specific intent.

Seal: the permission policy is signed and encrypted.

Present: the permission policy is transmitted to a runtime for execution.
Verify: the runtime validates the permission policy deterministically.
Execute: only allowed capabilities are exposed.

Audit: verification results and outcomes are recorded.

SRR B

The end-to-end execution path is shown in Figure 1.

execution (fail closed)



Figure 1. APP execution flow. No agent action or tool invocation is permitted unless a sealed
permission policy is presented and verified prior to execution.

Message boundaries and actor interactions are shown in Figure 7.

present policy

Decrypt + verify
deny execution (fail c\cse%)\/ahdate fields

pose allowed iities (tool allowlist

Y N I -

execute within scop

Figure 7. APP sequence diagram. Issuer, presenter, verifier, executor, and tool interactions show
policy sealing, presentation, verification, and execution gating.

5. Core concepts

e Capability: explicit authorization to perform a class of actions.
e Permission policy: a structured artifact that encodes authority.
e Intent: the purpose for which authority is granted.

e Scope: the enumerated capabilities permitted.

e Audience: the agents authorized to act.

e Issuer, presenter, verifier, executor: roles in the permission policy lifecycle.
6. Permission policy model

Permission policies are machine-readable documents with required fields:

* type

e policy_version
e request_id

e expires_at

e intent

e audience

e scope

Optional fields include:

e nonce (replay protection)
e limits (runtime constraints)
e metering (optional metadata)



All permission policies MUST be signed and MUST be encrypted. Unencrypted
permission policies MUST be denied. Encryption ensures that intent, scope, and
authority semantics are not observable by intermediaries or unauthorized parties.

See Figure 3 for the policy structure and sealing requirements.

| Unencrypted policy MUST be denied ]

Figure 3. Permission policy structure. A permission policy encodes intent, audience, scope, and
expiration, and is sealed via sign-then-encrypt.

7. Verification and enforcement
Validation is deterministic and fail-closed. A compliant verifier:

1. Decrypts and verifies signature.

Parses the permission policy and checks required fields.
Validates policy version and expiration.

Enforces replay requirements.

Enforces audience binding.

Exposes only allowed tools and capabilities.

NN

Applies runtime limits when present.
Any failure results in denial.

The deterministic validation order is shown in Figure 4.

o N . . Check expires_at
‘ Decrypt H Verify signature H Parse required fields H Validate version H (rvetod lock) I
unknown ne\m\;\ *
‘ Replay (nonce) H Audience binding H

Scopeftool allowli!

deny execution (fail closed)

Figure 4. Verifier pipeline (fail closed). Verification is deterministic and denies execution on any
cryptographic, semantic, or policy validation failure.



8. Cryptographic profile (APP-Crypto-Profile-1)

To prevent incompatible or insecure implementations, APP defines a mandatory
cryptographic baseline for version 1:

e Policy serialization: JSON

Signing: Ed25519

e Encryption: hybrid encryption with an AEAD payload (X25519 + AEAD)
¢ Ordering: sign then encrypt (mandatory)

Implementations MAY support additional algorithms, but MUST support this profile
for conformance.

9. Threat model and security outcomes
APP is designed to mitigate:

e ambient authority and tool leakage

e replay and unauthorized reuse

e confused deputy scenarios

e unbounded or indefinite permissions
e unverifiable audit trails

Security outcomes include explicit authority, bounded execution, and provable
enforcement decisions.

Threats and corresponding APP controls are summarized in Figure 5.

Threats APP controls

ambient authority permission policy + tool allowlist

replay and unauthorized reuse ce + expires_at

confused deputy audience binding

unbounded TTL expires_at + limits

unverifiable audit audit log + verifier records

]

Figure 5. Threat-to-control mapping. APP mitigations map directly to common agentic security
failure modes.

10. Integration patterns
APP is compatible with existing tooling stacks:

e Agent runtimes gate tool exposure on permission policies.
e API gateways verify permission policies before forwarding requests.



e Orchestrators enforce permission policies per step in multi-stage workflows.

APP complements OAuth, RBAC, and IAM by providing an explicit authority object for
agent actions.

Any system that allows agents to execute actions without presenting a sealed
permission policy at execution time is operating with ambient authority, regardless of
how its permissions are configured.

Figure 6 shows a typical integration placement alongside identity controls.

Client Auth (OAuth/IAM) APP verifier Agent runtime Tools/APIs
(gateway/runtime)

Identity authenticates; APP authorizes execul tion.

Figure 6. Integration placement. APP complements identity systems by providing execution-
time authorization at the runtime or gateway boundary.

11. Verifier compliance checklist
An APP-compliant verifier MUST:

e Deny unencrypted permission policies.

e Verify the signature before interpreting semantics.

e Validate required fields and supported policy_version.

e Enforce expiration strictly with a trusted clock.

e Enforce replay rules atomically when required.

e Enforce audience binding.

e Expose only allowlisted tools and capabilities.

e Fail closed on ambiguity, parse errors, or unknown fields.

12. Governance and standardization path
This proposal recommends:

e an open specification with versioned releases

e aconformance test suite for interoperability

e areference validation checklist (MUST/SHOULD)
e community-driven review and evolution

Crittora proposes to steward the initial draft and contribute reference implementations
to accelerate adoption.



Crittora is committing to open stewardship of APP while using it as the foundational
authority layer across its own platforms.

13. Security considerations

Implementations must enforce fail-closed behavior, strict TTL checks, and audience
binding. Replay protection must be atomic. Key management and trusted time are
foundational assumptions.

14. Privacy considerations

Policies can include sensitive intent or metadata. Mandatory encryption protects
confidentiality while preserving verifiability.

15. Conclusion

Agentic Al demands a new security boundary. APP defines explicit, time-bound,
verifiable authority that can be enforced before any action occurs. This proposal invites
the ecosystem to standardize agent authority as a protocol, making autonomous
systems safer and auditable across platforms.



